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Course Description
Social actors interact using language. As a result, testing social science theories usually requires
analyzing, in one way or another, written language. Thankfully, recent advances in computational
linguistics have considerably increased the reach of scholars interested in working with textual
data. Moreover, swathes of digitized documents have been made available to researchers in re-
cent years. This includes parliamentary records, committee proceedings, bills, laws, international
treaties, news reports, social media discussions, blogs, websites, and so forth. How to process and
analyze such large quantities of textual data meaningfully is the central focus of this course.

The course introduces students to the state of the art in the �eld of computer-assisted textual
analysis. It covers the most widely used methods for the empirical analysis of textual data, from the
preprocessing stages to the interpretation of �ndings. The course also includes an introduction to
machine learning. By the end of this course, students will have gained expertise with an important
branch of computational social science. They will also have developed skills with the Python
programming language.

Course Format
In light of the pandemic still a�ecting campus activities, the course takes place online via Zoom
(synchronously). Instructions to log in will be made available on Quercus at the beginning of the
semester.

Classes are a combination of advanced lectures and interactive exercises. Materials to repro-
duce class examples will be available on Quercus.
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Software
Class exercises and demonstrations will be done using the Python programming language. Python
is the most popular programming language in the world, and is especially useful for the analysis
of textual data. The course begins with an introduction to the language.

Class examples will rely upon Python 3.8 (any version of Python 3.x should be good to go).
In-class examples will be provided from the Jupyter notebook, a user-friendly environment for
interactive computing.

Python is freely available on all operating systems. It should be installed by default on Mac
computers. Students can reproduce exercises and replicate examples on their personal computers
during class.

Requirements
This course may be of interest to graduate students using either qualitative or quantitative methods
(or both). Although there are no formal requirements for the course, it will involve some advanced
concepts in programming and statistics. A background in statistical analysis and/or computing
would be useful, at the level of the PhD introductory course POL 2504. The pedagogical approach
is tailored to students who may not have had an extended training in mathematics or computing
as undergraduate students (as is often the case in the social sciences).

Marking Scheme
Given the intensive pace of a summer semester, the course relies on three assignments (plus a
participation mark). The �rst two assignments are problems sets. The last assignment is a critical
evaluation of written work from the �eld of text as data (5 pages max).

Written Assignment #1 30% Due May 19, 2021
Written Assignment #2 30% Due June 14, 2021
Written Assignment #3 30% Due at the end of term (June 21)
Participation 10 %

Readings
The readings for this course comprise a collection of chapters from the following set of seminal
texts in the �eld. The readings recommended for each class are helpful to supplement the lecture
notes that will be made available to students. All of these books are accessible for free online,
either from the authors’ websites or electronically through the UofT Library.

• Bird, Steven, Ewan Klein and Edward Loper. 2009. Natural Language Processing with Python.
O’Reilly Media.

◦ An accessible introduction to natural language processing in Python. The book is avail-
able online for free.

• Manning, Christopher D., Prabhakar Raghavan and Hinrich Schütze. 2009. Introduction to
Information Retrieval. Cambridge: Cambridge University Press.

◦ A key reference that covers most of the topics discussed in this course, and more. On-
line versions are available.
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• Jurafsky, Daniel and James H. Martin. 2020. Speech and Language Processing. 3rd Edition.
New Jersey: Prentice Hall.

◦ Another useful reference for exploring some of the topics in more depth. Some chapters
are available online for free.

• Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical Natural Lan-
guage Processing. Cambridge: MIT Press.

◦ An older reference that nonetheless covers key basic concepts for this course. The book
is available electronically through the UofT Library.

• Hastie, Trevor, Robert Tibshirani and Jerome Friedman. 2009. The Elements of Statistical
Learning. 2nd Edition. Berlin: Springer.

◦ A useful reference on the particular topic of machine learning. The book is available
electronically through the UofT Library.

• Hovy, Dirk. 2020. Text Analysis in Python for Social Scientists: Discovery and Exploration.
Cambridge: Cambridge Elements Series.

◦ This new resource is a short book that covers many of the topics we study in this
course. It is available electronically through the UofT Library.

Evaluations
The course uses two evaluation formats to help students develop di�erent skills related to scienti�c
research.

Problem Sets

The �rst two written assignments are problem sets designed to evaluate students’ ability to put
the methods learned into practice. They involve practicing various types of textual analysis using
Python and answering short factual questions about the models and their interpretation.

There is no better way to improve one’s skills than practice. Therefore, those exercises are
not only useful as evaluations, but also as a way for students to gain concrete expertise with the
subject-matter. Assignments are done individually. They are submitted on Quercus at the due
date.

Critical Review

The last assignment consists of reading and discussing published work relying on text as data.
The list of admissible papers will be posted on Quercus. The goal is to demonstrate that, at the
end of the term, the graduate student is able to engage with the literature in a meaningful way,
understand the methods and judge their appropriateness, and identify the strengths and limitations
of published studies involving automated textual analysis.

This exercise will be valuable in preparing students to read and write their own papers using
text as data.
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Class Schedule: Summary

Date Topic Evaluation
May 3 Computers and language & introduction to Python
May 5 Introduction to Python (continued)
May 10 Statistics for textual data I
May 12 Statistics for textual data II
May 17 Concepts in computational linguistics
May 19 Lexicons and dictionaries Assignment 1 due
May 24 [Victoria Day - No Classes]
May 26 Meaning and word embeddings
May 31 Introduction to machine learning
June 2 Supervised learning I
June 7 Supervised learning II
June 9 Unsupervised learning I
June 14 Unsupervised learning II Assignment 2 due
June 21 [Final assessment period] Assignment 3 due

Note: Topics by date are for information only. The schedule above (and the detailed structure in the following pages) may
by adjusted during the term due to unforeseen circumstances or to improve the pedagogical bene�ts to students.
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Class Schedule: Detailed

Topic 1: Computers and Text

May 3: Computers and Language; Introduction to Python
1. Brief history of automated textual analysis.
2. Examples of recent applications.
3. Introduction to Python 3 (beginning).

May 5: Introduction to Python (Continued)
1. Introduction to Python 3 (continued).
2. Data types, lists and dictionaries.
3. Input/Output.
4. Functions and conditional statements.
5. Encoding text.
6. Processing textual data in Python.
7. Exercise: Parsing text in various formats (html, xml, pdf �les).

Readings

• Hovy (2020), Ch. 1.
• Bird, Klein, and Loper (2009), Ch. 2–4.

Other Useful References

• Aggarwal and Zhai (2012b).
• Manning and Schütze (1999), Ch. 1.
• McKinney (2013), Ch. 1.
• Downey, Elkner, and Meyers (2002), Ch. 1–2.
• D’Orazio et al. (2014).
• Jockers (2014).
• Weiss, Indurkhya, and Zhang (2015).
• Krippendor� (2013), Ch. 4.
• Grimmer and Stewart (2013).
• Gentzkow, Kelly, and Taddy (2019).
• Benoit (2019).
• Watch a 45-minute introductory video on Python.
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Topic 2: Statistics for Textual Data

May 10: Statistics for Textual Data I
1. Document retrieval and indexing.
2. Tokenization, sentence splitting.
3. Word counts and word distributions.
4. Vectorization.
5. Visualization techniques.

May 12: Statistics for Textual Data II
1. Term-frequency/inverse document frequency (tf–idf) weighting.
2. Word co-occurrences/collocations.
3. Comparing texts.
4. Statistical properties of texts.

Readings

• Manning, Raghavan, and Schütze (2009), Ch. 1–2.
• Hovy (2020), Ch. 2–4.
• Manning and Schütze (1999), Ch. 5–6.

Other Useful References

• Bird, Klein, and Loper (2009), Ch. 2–4.
• Jiang (2012).
• Nenkova and McKeown (2012).
• Python Online Documentation.

Examples of Applications

• Laver and Garry (2000).
• Laver, Benoit, and Garry (2003).
• Al�ni and Chambers (2007).
• Lowe (2008).
• Slapin and Proksch (2008).
• Monroe, Colaresi, and Quinn (2008).
• Gentzkow and Shapiro (2010).
• Proksch and Slapin (2010).
• Black et al. (2011).
• Däubler et al. (2012).
• Acton and Potts (2014).
• Yu (2014).
• Spirling (2016).
• Blaxill and Beelen (2016).
• Benoit, Munger, and Spirling (2019).
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Topic 3: Linguistics and Natural Language Processing

May 17: Concepts in computational linguistics
1. Overview of linguistic theory.
2. Unigrams, bi-grams and n-grams.
3. Part-of-speech tagging.
4. Stemming and lemmatization.
5. Grammar parsing.
6. Named entity recognition.

May 19: Lexicons and dictionaries
1. Creating and using word lexicons (dictionaries).
2. Summarizing text properties.
3. Political science applications: Word Scores and WordFish.

May 26: Meaning and word embeddings
1. Meaning representation and latent semantic analysis.
2. Word embeddings.
3. Word similarities and word relations.

Readings

• Bird, Klein, and Loper (2009), Ch. 5.
• Hovy (2020), Ch. 5.
• Jurafsky and Martin (2020), Ch. 20.

Other Useful References

• Manning, Raghavan, and Schütze (2009), Ch. 6.
• Miller et al. (1990).
• Turney and Pantel (2010).
• Mikolov et al. (2013).
• Manning et al. (2014).
• Landauer, Foltz, and Laham (1998).
• Python Online Documentation.

Examples of Applications

• Tausczik and Pennebaker (2010).
• Bollen, Mao, and Zeng (2011).
• Bollen, Mao, and Pepe (2011).
• Golder and Macy (2011).
• Michel et al. (2011).
• Young and Soroka (2012).
• Jensen et al. (2012).
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• Coviello et al. (2014).
• Gentzkow, Shapiro, and Taddy (2016).
• Rheault et al. (2016).
• Vosoughi et al. (2018).
• Martin and McCrain (2019).
• Gennaro and Ash (2021).

Topic 4: Machine Learning

May 31: Introduction to Machine Learning
1. Machine learning and classi�cation.
2. Annotating texts and intercoder reliability.
3. Development, training and testing.
4. An introductory example: sentiment analysis.

June 2: Supervised Learning I
1. Features and classes.
2. “Bag of words” approach.
3. Feature selection.
4. Naive Bayes classi�ers.
5. Nearest Neighbor classi�ers.
6. Multi-class problems.

June 7: Supervised Learning II
1. Evaluating classi�ers.
2. Accuracy measures.
3. Ridge regression.
4. Support vector machines.
5. Applications in Python.

June 9: Unsupervised Learning I
1. Unsupervised learning.
2. Motivating example: topic classi�cation.
3. Clustering analysis.
4. Principal component analysis.

June 14: Unsupervised Learning II
1. Latent Dirichlet Allocation (LDA).
2. Correlated and dynamic topic models.
3. Non-Negative Matrix Factorization.
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Readings

• Hastie, Tibshirani, and Friedman (2009), Ch. 2, 6–7, 12.
• Hovy (2020), Ch. 6–7.

Other Useful References

• Manning, Raghavan, and Schütze (2009), Ch. 15.
• Shawe-Taylor and Cristianini (2000).
• Blei, Ng, and Jordan (2003).
• Blei and La�erty (2006a).
• Blei and La�erty (2006b).
• Blei (2012).
• Bird, Klein, and Loper (2009), Ch. 6.
• Hayes and Krippendor� (2007).
• He and Garcia (2009).
• Steyvers and Gri�ths (2011).
• Aggarwal and Zhai (2012a).
• Richert and Coelho (2013).
• Lantz (2013).
• James et al. (2013).
• Raschka (2015).
• scikit-learn for Python: Online Documentation.

Examples of Applications

• Mosteller and Wallace (1964).
• Airoldi, Fienberg, and Skinner (2007).
• Yu, Kaufmann, and Diermeier (2008).
• Hopkins and King (2010).
• Grimmer (2010).
• Grimmer, Messing, and Westwood (2012).
• Diermeier et al. (2012).
• Hirst et al. (2014).
• Roberts et al. (2014).
• D’Orazio et al. (2014).
• Lucas et al. (2015).
• Harris (2015).
• Reich et al. (2015).
• Roberts, Stewart, and Airoldi (2016).
• Tingley (2017).
• Greene and Cross (2017).
• Peterson and Spirling (2018).
• Barberá et al. (2019).
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