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Objectives of the Project

� �antifying sentiment, activation and specific emotional states
(anxiety) in political videos, using three modalities.

� In this talk: TEXT vs AUDIO.

� Methods: deep neural networks; transfer learning.

� Training data: annotated political videos with transcripts.

� Issues: heterogeneity across speakers; coder reliability.

Reference
A preliminary study introducing this project:
Rheault and Borwein (2019).

Looking for political transcripts? Check out lipad.ca.
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https://polmeth.mit.edu/sites/default/files/documents/RheaultBorwein_PolMeth2019.pdf
https://www.lipad.ca/


Previous Work: Audio Data

� Political Science:
� Dietrich et al. (2019a; 2019b): Pitch as measure of

activation.
� Knox and Lucas (2019): HMM model; skepticism in

voice.
� Neumann (2019): Phonetics; style-shi�ing.
� Hwang et al. (2019): Audio and video; political ads.
� ...

� Engineering/Computer Science:
� Schuller (2018).
� Tzirakis et al. (2017).
� ...
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Representing Emotions

Categorical Approaches
� e.g. Ekman’s six basic emotions (fear, anger, sadness, surprise,

happiness, disgust).

� Problem: many of them not commonly observed in elites’
speeches.

� Fear vs. anxiety.

Dimensional Approaches
� e.g. Russel’s circumplex model of a�ect.

� Sentiment (or valence) and activation (arousal).
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Circumplex Model of A�ect
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Our Data

Sources
3,635 videos: Canadian House of Commons, US Congress, Debates.

Annotations (Labels)
Three binary annotations (graduate students; MTurk workers).

� Sentiment

� Activation

� Anxiety

Current work: Improving coder reliability.
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Pipeline for processing videos
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Final Video Collection

Upcoming Steps
� Public release of video dataset with improved coder reliability.

� Lab subjects with biometric measurements as ground truth.

(with Jonathan Rose and Bazen Teferra, UofT Engineering)

Trade-O�
� Crowdsourced annotations of public domain videos:

� Easier to make data public;
� Usually low intercoder reliability;

� Human subjects with biometric ground truth:
� Higher reliability;
� Very di�icult to anonymize audio and video signals.
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Methods, Concepts and Definitions



Machine learning in one slide

Social science (inference) Machine learning (prediction)

GLM inverse link function Activation function

E(y) = f (x′β) E(y) = f (x′β)

Preferred objective function

Log-likelihood Cross-entropy

logL =
∑n

i=1 log P(yi|xi,β) − logL = −
∑n

i=1 log P(yi|xi,β)

Solving algorithm

Newton-Raphson Gradient descent

βt := βt−1 − [H logL]−1∇ logL βt := βt−1 − η∇(− logL)
�antities of interest

β̂;Var(β̂) ŷ;
∑

1(ŷ = y)/n
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Preliminaries: Neural Networks

Logistic Regression as Neural Network

x1

x2

y

E(y) = f (α+ x′β)

Neural Network with Hidden Layer

x1

x2

h1

h2

y

E(y) = f (2)(α(2) + h′β(2)); hk = f (1)(α
(1)
k + x′β(1)

k )

Deep Neural Network (DNN)

Multiple hidden layers: E(y) = f (4)(f (3)(f (2)(f (1)(x))))
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Preliminaries: Convolutional Neural Networks

1D ConvNet (or CNN)

x ∗ β = h
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Preliminaries: Convolutional Neural Networks
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Preliminaries: Convolutional Neural Networks

1D ConvNet
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Preliminaries: Convolutional Neural Networks

There will be K × L×M trainable β parameters, where L is the chosen number of

filters and M the filter size (or kernel size), plus a filter specific intercept.
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Methods: Current Trends

Audio
� Two main approaches: HMMs (e.g. Knox and Lucas 2019) and

deep neural networks (Hinton et al. 2012).
� Trends:

� No features: use raw audio signal as input in ConvNets.
� Transfer learning (e.g. Audioset, wav2vec, autoencoders).

Text
� Transfer learning everywhere:

� Previous years: Word embeddings + DNN as default.
� Now: transfer learning using more sophisticated language models

(e.g. ULMFiT, BERT, DistilBERT).
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Transfer Learning

� Defining the concept of transfer learning is controversial, but in a
nutshell:

The Problem
Specific applications usually have limited training data, resulting in
poor predictive accuracy.

The Solution
Pre-train a model using a very large dataset, for a di�erent task (e.g.
an autoencoder). Use the parameters of this larger model as
feature representations for the target task, or fine-tune the
model for the target task using local data.
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Text as Data



Transfer Learning (Word Embeddings, Skip-Gram)

afraid (wt )

I (wt−2)

am (wt−1)

of (wt+1)

bats (wt+2)

h

βV×M

The learned feature representation matrix βV×M (V size of
vocabulary, M size of hidden layer) contains information about

semantics not available from a small sample. (Mikolov et al. 2013)
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Transfer Learning (Word Embeddings)

� Map words from a new dataset onto pre-trained embeddings:

“I” → [−0.51, 1.29, ..., 1.34]

“am” → [0.76,−2.44, ...,−1.06]

“afraid” → [−0.83,−3.09, ..., 0.86]

“of” → [2.25,−2.16, ...,−0.98]

“Covid-19” → [0, 0, ..., 0]

� Each document is a matrix: sequence of T words with feature
length M.

� Use ConvNets or recurrent neural network (RNNs) to predict
target annotation (e.g. sentiment) from the sequences.

RNNs: ht = f (α+ (xt)′β + (ht−1)′θ)

IMC - Rheault and Borwein - Text as Data March 2020 20 / 40



Transfer Learning (BERT)

I

am

afraid

of

[MASK]

I

am

afraid

of

bats

Transformers
24 layers

βV×M

Bidirectional Encoder Representations from Transformers (BERT) trained on

Wikipedia + BooksCorpus, using two tasks (predicting masked word shown

above) (Devlin et al. 2019).
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Transfer Learning (BERT)

� Like word embeddings, BERT can provide pretrained embeddings
(first hidden layer, or encoder).

� Deep learning architecture (transformers with a�ention weights)
with state-of-the art results on many NLP tasks.

� Two straightforward methods to adapt BERT for a new task:
� “Freeze” the parameters, add an output layer on top of BERT (e.g.

logistic or so�max), and fit with local data.
� Add the output layer and continue training all parameters with

local data (fine-tuning).

� BERT Large model: 24 transformer layers, hidden layer size of
1024.
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Results, Text-as-Data Benchmark

BERT model (high-quality annotations only)

Emotion Accuracy (%) Modal (%) PRE (%) AUROC

Sentiment 88.2 56.2 73.0 0.89

Activation 74.6 71.5 11.0 0.65

Anxiety 62.5 52.0 21.9 0.63

� Text classification works well with sentiment, less so for
activation and a specific emotion like anxiety.

� Substantive conclusion the same with other classifiers (e.g. word
embeddings + RNN) and annotation quality.

� “The sentiment is in the transcript, but the arousal is not”
(Cochrane et al. 2019).

(Accuracy calculated on a held out sample; we use the same with
audio models for comparison.)
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Audio as Data



Audio Data: Raw Signals (Waveform)

A vector of signed integers with a specified bit depth (e.g. 16 bits
ranges from -32767 to 32767), usually converted to float:

[0, 0, 0.15, 0.21, ..., 0]

with sampling rate in Hz (integers per second, e.g. 16KHz).

For a great intro on sound, check past IMC presentation from
Christopher Lucas.
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Transfer Learning (wav2vec)

Audio Signal

5 layers of ConvNets Feature representation

Task: predict future samples of the input signal vs “distractor” samples.

Schneider et al. (2019)
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Transfer Learning (wav2vec)

� Use input audio samples to predict likelihood of future sample.

� Trained on 1,000 hours of spoken language (LibriSpeech).

� Two di�erent outputs of wav2vec ConvNet blocks can be used as
feature representation of wave inputs (10ms × 512):

0ms–10ms → [0.0, 0.03, ..., 0.05]

10ms–20ms → [0.04, 0.02, ..., 0.14]

20ms–30ms → [0.01, 0.0, ..., 0.16]

30ms–40ms → [0.0, 0.11, ..., 0.06]

· · · → · · ·
� Intuition similar to word embeddings/BERT.
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Audio Data: Model I (Schematic Depiction)

Audio Signal

Audio Features
(wav2vec)

2L of ConvNets

Output Node

(Anxiety,
Activation

or Sentiment)

Two 1D ConvNet layers with 16 and 8 filters (size 3), dropout and pooling.
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Results Part I, Audio Data (ConvNet)

ConvNets with wav2vec
Emotion Accuracy (%) Modal (%) PRE (%) AUROC

Activation 80.1 71.5 30.0 0.75

Anxiety 71.7 52.0 41.1 0.72

Sentiment 56.2 56.2 0.0 0.54

� Be�er than text for activation and anxiety, but not impressive.
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Issue: Speaker Heterogeneity

Speaker Heterogeneity
Each voice is unique. As with heterogeneity bias in panel data
analysis, we would like to account for a speaker j’s a�ributes:

E(y) = f (αj + x′β)

� Deep neural networks can learn to distinguish emotional states
from speaker-specific a�ributes, but this would require a lot of
training data.

� Speaker-specific intercepts wouldn’t help for new speakers,
unobserved during training stage.
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Speaker Voice Recognition

Voice Encoder for Speaker Verification
A voice encoder to represent each speaker’s individual voice
characteristics.
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Used for voice synthesis and voice cloning, e.g. Google’s Tacotron (Wan et
al. 2018, Jia et al. 2019).
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Audio Data: Speaker Embeddings (Voice Encoders)
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Audio Data: Model II (Schematic Depiction)

Audio Signal

Audio Features

(wav2vec)

Speaker Embedding

2L of ConvNets

Output Node

Two 1D ConvNet layers with 16 and 8 filters (size 3), dropout and pooling.
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Results Part II, Accounting for Heterogeneity

ConvNet with wav2vec AND speaker embeddings

Emotion Accuracy (%) Modal (%) PRE (%) AUROC

Activation 88.9 71.5 61.0 0.85

Anxiety 78.9 52.0 56.2 0.79

Sentiment 59.7 56.2 8.0 0.58

ConvNet with wav2vec, no speaker embeddings

Emotion Accuracy (%) Modal (%) PRE (%) AUROC

Activation 80.1 71.5 30.0 0.75

Anxiety 71.7 52.0 41.1 0.72

Sentiment 56.2 56.2 0.0 0.54
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Results Part III, Impact of Annotation �ality

ConvNet with wav2vec and speaker embeddings
(High quality annotations only)

Emotion Accuracy (%) Modal (%) PRE (%) AUROC

Activation 88.9 71.5 61.0 0.85

Anxiety 78.9 52.0 56.2 0.79

Sentiment 59.7 56.2 8.0 0.58

ConvNet with wav2vec and speaker embeddings
(Including low quality annotations)

Emotion Accuracy (%) Modal (%) PRE (%) AUROC

Activation 76.6 62.6 37.4 0.75

Anxiety 75.7 52.0 49.3 0.76

Sentiment 62.5 50.8 23.7 0.63
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Summary: Audio (ConvNet) vs Text (BERT)

Audio Modality

Emotion Accuracy (%) Modal (%) PRE (%) AUROC

Activation 88.9 71.5 61.0 0.85

Anxiety 78.9 52.0 56.2 0.79

Sentiment 59.7 56.2 8.0 0.58

Text Modality

Emotion Accuracy (%) Modal (%) PRE (%) AUROC

Activation 74.6 71.5 11.0 0.65

Anxiety 62.5 52.0 21.9 0.63

Sentiment 88.2 56.2 73.0 0.89
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Full Project: Visual Modality

Input Video Face Recognition
(256 × 256 × 3)

InceptionV3

Pooling Top Layer

Output
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Conclusion

� Text transcripts and audio signals of political speeches o�er
complementarity:

� Audio be�er at capturing aroused/anxious speakers.
� Transcript be�er at capturing sentiment (valence).

� Accounting for speaker heterogeneity ma�ers in small samples.

� �ality of human coding a major issue in speech emotion
recognition.

� Future step: Completion and public release of video collection.

� Future step: Audio vs Text vs Visual.

Feedback welcome!
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